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A novel method is reported for the preparation of wurtzite
gallium nitride (GaN) powder with a controlled particle size
from nanometer to micron scale, using gallium(IIl)-urea com-
plex as the precursor. The GaN powders as synthesized at var-
ious temperatures showed strong and distinct photolumines-
cence characteristics. The method developed here may
provide a simple, potentially economical way to form other ni-
tride materials with desired performances.

During last 10 years, gallium nitride (GaN) and related I1I-
V semiconductors have emerged as leading materials for opto-
electronic devices such as light emitting diodes and laser diodes
in the blue/UV region.l_(’ They are almost exclusively used in
thin films typically deposited by chemical vapor deposition or
molecular beam epitaxy. Relatively little attention has been di-
rected on nanocrystalline GaN powder material, which has po-
tential uses in both mesoscopic research and future development
of nanodevices.”” GaN powder was traditionally synthesized
by direct nitridation of Ga or Ga,Os; at high temperatures
(>850°C) for an extended period. Several methods have been
developed recently,lo_]4 typically using expensive and air-sensi-
tive molecular precursors which tend to limit large-scale mate-
rials development and increase application costs.

In the present work, we report an alternative route to pro-
duce nanocrystalline wurtzite GaN powder from cheaper
gallium(Ill)-urea complex at lower temperatures (500-600 °C)
for 1h. This novel route is an attractive method for producing
GaN powder in a tube furnace, while it is possible to control
over particle size from nanometers to microns, and the photolu-
minescence characteristics.

10.25 g of gallium (99.9999%) was dissolved in hydrochlo-
ric acid (36-38%), and was heated to be concentrated. After
some ethanol was added in, the solution was dried at 100°C
to get a gelatin and then reacted with 52.98 g of urea (>99%)
under stirring in ethanol. Ga(Ill)-urea complex was obtained af-
ter being dried at 110°C.

IR characteristics of the complex are shown in Figure la,
compared with those of urea. The presence of a carbonyl vibra-
tion at 1724cm™! and the shift of CN absorption peaks from
1468 to 1404 cm™! indicate the formation of a nitrogen-to-gal-
lium coordinate bond between urea molecules and Ga>* ion."
Other bands of the complex are assigned as the coordinated
N-H stretching vibration at 3203 cm™!, and the free NH, vibra-
tion at 3411 and 1608 cm™!, respectively. For comparison, the
bands of urea are assigned as followed; peaks at 3435 and
3346cm™! to NH, group, a peak at 1600cm™' to a combined
carbonyl stretching vibration and bending vibration of NHp,
and a shoulder at 1684 cm™! to carbonyl vibration. Since both
the free and coordinated N-H frequencies are observed, it is
concluded that only one nitrogen atom of each urea molecule

Transmittance

4000 3500 3000 2500 2000 1500
Wavenumbers /cm”

L 0.80 5 b
100 328°C366°C
217°C

32 20 o 075
~ -
g E 0.70
= 3

L 0.65
g 60
= 0.60

150 200 250 300 350 400
2 401 Temperature / °C
2
20+

0 1 1 1 1 1
0 200 400 600 800 1000
Temperature /°C

Figure 1. (a) Infrared spectra of (- - -) urea and (—) Ga(Ill)-urea
complex. (b) Thermogravimetrical curve of Ga(Ill)-urea complex
under argon atmosphere. Inset: differential scanning caloric curve.

coordinates to Ga** jon."” The molecular formula may be writ-
ten as Ga(NH,CONH,)¢Cl3, where the coordination number 6
is calculated from the original urea/Ga ratio, because no exces-
sive urea is detected under the detectability of IR (ca. 5%). TG
curve of the complex under argon atmosphere (Figure 1b) ex-
hibits a two-stage weight loss between 120-380°C. Corre-
spondingly, DSC shows a strong endothermic peak around
217°C, and two minors between 300-380°C (inset of Figure
1b). Our previous studies suggest that these endothermic proc-
esses involve the dissociation of the coordinated urea.'®!” The
weight-loss curve is near flat above 400°C. Considering the
high vapour pressure of GaCls, the final solid remaining should
be GaCl, which is stable at temperatures above 600 °C. The to-
tal weight loss at 600 °C is 80.4%, equal to the calculated value
on the assumption of GaCl.

The pyrolysis of the complex powders at 500-900°C for
1 h under flowing ammonia (0.5 L/min) resulted in the forma-
tion of GaN, via the reaction

GaCl + NH3 — GaN + HCI + H,.

In conventional vapour phase epitaxy of GaN, GaCl was formed
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Figure 2. XRD patterns of GaN powders with the wurtzite struc-
ture (H).

by the reation of liquid Ga and highly corrosive HCI in a two-
zone furnace at high temperatures (>800 °C).% In this work,
GaCl was produced in situ as the Ga source after the decompo-
sition, thus the reactor structure can be simplified and the pro-
duction cost will be lowered. The GaN powder prepared at
500, 600, and 900°C are denoted as GaN-500, GaN-600 and
GaN-900, respectively.

The X-ray powder diffraction (XRD, Cu Ko A = 1.5418)
patterns of GaN-500 and GaN-600 in Figure 2 show broadened
diffraction peaks, indexed as wurtzite GaN, corresponding to
the characteristic of nanocrystallites, while peaks for GaN-900
are stronger and sharper, indicating a higher crystallization de-
gree and a larger particle size. TEM micrographs demonstrate
clearly that particles of GaN-500 and GaN-600 are in the nano-
meter scale (Figure 3). These powders have an average particle
size of 13 and 24 nm, respectively, by measuring the maximum
diameter of 500 particles. For GaN-900, flaky particles of 0.1—
1 um are obtained.

PL measurements of GaN powders were carried out using a
fluorescence spectrometer with a Xe lamp (excited at 347 nm) at
room temperature. All samples show a strong and narrow band-
edge emission peak at 362 nm (Figure 4).31% GaN-500 exhibits
the strongest band-edge emission. However, its PL spectrum
consists of a typical yellow luminescence at 400-620 nm'%%°
and an impurity-related shoulder at 470 nm.? A peak at

394 nm is not firmly identified. Increasing the synthesis temper-
ature, and therefore at the same time increasing the particle
sizes, resulted in a dramatic decrease of the impurity-related
emission and a minor decrease of the band-edge emission.
The yellow band is absent in GaN-600 and GaN-900. The pres-
ent results show that a small particle size obtained at a lower

Figure 3. Transmission electron micrographes of (a) GaN-500 and
(b) GaN-600. The same scale is used in both images.
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Figure 4. PL spectra of GaN powders measured at room temper-
ature.

temperature facilitates the band-edge emission, and 600 °C
should be an appropriate synthesis temperature for both a small
particle size and good optical performance.

In summary, nanocrystalline wurtzite GaN powder with in-
tense photoluminescence was synthesized at 500-600 °C from
Ga(Ill)-urea complex. The synthesis provide a simple, poten-
tially economical method with control over the GaN particle
size and its photoluminescence characteristics, and may also
be extended to form other nitride and III-V semiconductor ma-
terials. Further efforts are underway to perform extended inves-
tigation of the photoluminescence, thus to clarify the underlying
mechanism, and to produce size-controlled GaN powder with
strong emission by optimizing the synthetic parameters.
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